

Elasticsearch

i

About the Tutorial

Elasticsearch is a real-time distributed and open source full-text search and analytics

engine. It is used in Single Page Application (SPA) projects. Elasticsearch is open source

developed in Java and used by many big organizations around the world. It is licensed

under the Apache license version 2.0.

In this brief tutorial, we will be explaining the basics of Elasticsearch and its features.

Audience

This tutorial is designed for software professionals who want to learn the basics of

Elasticsearch and its programming concepts in simple and easy steps. It describes the

components of Elasticsearch with suitable examples.

Prerequisites

You should have a basic understanding of Java, JSON, search engines, and web

technologies. The interaction with Elasticsearch is through RESTful API; therefore, it is

always recommended to have knowledge of RESTful API.

Disclaimer & Copyright

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Elasticsearch

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. ELASTICSEARCH — BASIC CONCEPTS .. 1

Elasticsearch – General Features ... 1

Elasticsearch – Key Concepts ... 1

Elasticsearch – Advantages ... 2

Elasticsearch – Disadvantages ... 2

Comparison between Elasticsearch and RDBMS .. 3

2. ELASTICSEARCH — INSTALLATION .. 4

3. ELASTICSEARCH – POPULATE ELASTICSEARCH ... 8

Create Index .. 8

Create Mapping and Add data ... 8

Add another Index .. 9

Create Mapping and Add Data .. 9

4. ELASTICSEARCH — MIGRATION BETWEEN VERSIONS .. 11

Snapshot and Restore Module .. 11

Full Cluster Restart .. 12

Rolling Upgrades ... 14

Elasticsearch

iii

5. ELASTICSEARCH — API CONVENTIONS ... 15

Multiple Indices .. 15

Comma Separated Notation .. 15

_all keyword for all indices .. 15

Wildcards (* , + , –) .. 16

allow_no_indices .. 18

expand_wildcards ... 19

Date Math Support in Index Names .. 19

Pretty Results .. 20

Human Readable Output ... 21

Response Filtering ... 21

6. ELASTICSEARCH — DOCUMENT APIS .. 22

Index API ... 22

Automatic Index Creation ... 22

Versioning ... 23

Operation Type ... 23

Automatic ID generation ... 24

Parents and Children ... 24

Timeout... 25

Get API .. 25

Delete API ... 26

Update API .. 27

Multi Get API... 28

Bulk API ... 28

Elasticsearch

iv

7. ELASTICSEARCH — SEARCH APIS .. 29

Multi-Index ... 29

Multi-Type .. 29

URI Search ... 30

Request Body Search ... 30

8. ELASTICSEARCH — AGGREGATIONS .. 32

Metrics Aggregations .. 32

Avg Aggregation .. 32

Cardinality Aggregation ... 33

Extended Stats Aggregation .. 34

Max Aggregation ... 35

Min Aggregation ... 35

Sum Aggregation ... 36

Bucket Aggregations ... 36

Aggregation Metadata .. 37

9. ELASTICSEARCH — INDEX APIS ... 39

Create Index .. 39

Delete Index .. 41

Get Index .. 41

Index Exist ... 41

Open / Close Index API .. 42

Index Aliases ... 42

Index Settings.. 43

Analyze ... 43

Index Templates .. 44

Index Stats .. 44

Elasticsearch

v

Flush ... 45

Refresh .. 45

10. ELASTICSEARCH — CLUSTER APIS .. 46

Cluster Health ... 46

Cluster State .. 46

Cluster Stats .. 47

Pending Cluster Tasks .. 47

Cluster Reroute ... 47

Cluster Update Settings ... 48

Node Stats ... 48

Nodes hot_threads .. 49

11. ELASTICSEARCH — QUERY DSL.. 50

Match All Query .. 50

Full Text Queries ... 51

Match query .. 51

multi_match query .. 52

Query String Query ... 52

Term Level Queries ... 53

Range Query ... 53

Compound Queries ... 55

Joining Queries .. 56

Geo Queries .. 57

12. ELASTICSEARCH — MAPPING ... 59

Field Data Types .. 59

Mapping Types .. 61

Elasticsearch

vi

Dynamic Mapping ... 61

Mapping Parameters ... 62

13. ELASTICSEARCH — ANALYSIS... 63

Analyzers... 64

Tokenizers ... 65

Token Filters.. 66

Character Filters .. 66

14. ELASTICSEARCH — MODULES .. 67

Cluster-Level Routing and Shard Allocation ... 67

Discovery .. 69

Gateway .. 70

HTTP .. 70

Indices ... 71

Node ... 72

15. ELASTICSEARCH — TESTING ... 73

Unit Testing ... 73

Integration Testing .. 73

Randomized Testing .. 75

Assertions ... 75

Elasticsearch

1

Elasticsearch is an Apache Lucene-based search server. It was developed by Shay Banon

and published in 2010. It is now maintained by Elasticsearch BV. Its latest version is

2.1.0.

Elasticsearch is a real-time distributed and open source full-text search and analytics

engine. It is accessible from RESTful web service interface and uses schema less JSON

(JavaScript Object Notation) documents to store data. It is built on Java programming

language, which enables Elasticsearch to run on different platforms. It enables users to

explore very large amount of data at very high speed.

Elasticsearch – General Features

The general features of Elasticsearch are as follows:

 Elasticsearch is scalable up to petabytes of structured and unstructured data.

 Elasticsearch can be used as a replacement of document stores like MongoDB and

RavenDB.

 Elasticsearch uses denormalization to improve the search performance.

 Elasticsearch is one of the popular enterprise search engines, which is currently

being used by many big organizations like Wikipedia, The Guardian, StakOverflow,

GitHub etc.

 Elasticsearch is open source and available under the Apache license version 2.0.

Elasticsearch – Key Concepts

The key concepts of Elasticsearch are as follows:

 Node: It refers to a single running instance of Elasticsearch. Single physical and

virtual server accommodates multiple nodes depending upon the capabilities of

their physical resources like RAM, storage and processing power.

 Cluster: It is a collection of one or more nodes. Cluster provides collective indexing

and search capabilities across all the nodes for entire data.

 Index: It is a collection of different type of documents and document properties.

Index also uses the concept of shards to improve the performance. For example, a

set of document contains data of a social networking application.

 Type/Mapping: It is a collection of documents sharing a set of common fields

present in the same index. For example, an Index contains data of a social

1. Elasticsearch — Basic Concepts

Elasticsearch

2

networking application, and then there can be a specific type for user profile data,

another type for messaging data and another for comments data.

 Document: It is a collection of fields in a specific manner defined in JSON format.

Every document belongs to a type and resides inside an index. Every document

is associated with a unique identifier, called the UID.

 Shard: Indexes are horizontally subdivided into shards. This means each shard

contains all the properties of document, but contains less number of JSON objects

than index. The horizontal separation makes shard an independent node, which

can be store in any node. Primary shard is the original horizontal part of an index

and then these primary shards are replicated into replica shards.

 Replicas: Elasticsearch allows a user to create replicas of their indexes and shards.

Replication not only helps in increasing the availability of data in case of failure,

but also improves the performance of searching by carrying out a parallel search

operation in these replicas.

Elasticsearch – Advantages

 Elasticsearch is developed on Java, which makes it compatible on almost every

platform.

 Elasticsearch is real time, in other words after one second the added document is

searchable in this engine.

 Elasticsearch is distributed, which makes it easy to scale and integrate in any big

organization.

 Creating full backups are easy by using the concept of gateway, which is present

in Elasticsearch.

 Handling multi-tenancy is very easy in Elasticsearch when compared to Apache

Solr.

 Elasticsearch uses JSON objects as responses, which makes it possible to invoke

the Elasticsearch server with a large number of different programming languages.

 Elasticsearch supports almost every document type except those that do not

support text rendering.

Elasticsearch – Disadvantages

 Elasticsearch does not have multi-language support in terms of handling request

and response data (only possible in JSON) unlike in Apache Solr, where it is possible

in CSV, XML and JSON formats.

 Elasticsearch also have a problem of Split brain situations, but in rare cases.

Elasticsearch

3

Comparison between Elasticsearch and RDBMS

In Elasticsearch, index is a collection of type just as database is a collection of tables in

RDBMS (Relation Database Management System). Every table is a collection of rows just

as every mapping is a collection of JSON objects Elasticsearch.

Elasticsearch RDBMS

Index Database

Shard Shard

Mapping Table

Field Field

JSON Object Tuple

Elasticsearch

4

The steps for installation of Elasticsearch are as follows:

Step 1: Check the minimum version of your java in installed your computer, it should be

java 7 or more updated version. You can check by doing the following:

In Windows Operating System (OS) (using command prompt):

> java -version

In UNIX OS (Using Terminal):

$ echo $JAVA_HOME

Step 2: Download Elasticsearch from https://www.elastic.co/downloads/elasticsearch

 For windows OS download ZIP file.

 For UNIX OS download TAR file.

 For Debian OS download DEB file.

 For Red Hat and other Linux distributions download RPN file.

 APT and Yum utilities can also be used to install Elasticsearch in many Linux

distributions.

Step 3: Installation process for Elasticsearch is very easy and described below for

different OS:

 Windows OS: Unzip the zip package and the Elasticsearch is installed.

 UNIX OS: Extract tar file in any location and the Elasticsearch is installed.

$tar –xvf elasticsearch-2.1.0.tar.gz

 Using APT utility for Linux OS:

o Download and install the Public Signing Key:

$ wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch
| sudo apt-key add -

2. Elasticsearch — Installation

https://www.elastic.co/downloads/elasticsearch

Elasticsearch

5

o Save the repository definition:

$ echo "deb
http://packages.elastic.co/elasticsearch/2.x/debian stable
main" | sudo tee -a /etc/apt/sources.list.d/elasticsearch-
2.x.list

o Run update:

$ sudo apt-get update

o Now you can install by using the following command:

$ sudo apt-get install elasticsearch

 Using YUM utility for Debian Linux OS:

o Download and install the Public Signing Key:

$ rpm --import https://packages.elastic.co/GPG-KEY-
elasticsearch

o ADD the below text in the file with .repo suffix in your

“/etc/yum.repos.d/” directory. For example, elasticsearch.repo

[elasticsearch-2.x]

name=Elasticsearch repository for2.x packages

baseurl=http://packages.elastic.co/elasticsearch/2.x/centos

gpgcheck=1

gpgkey=http://packages.elastic.co/GPG-KEY-elasticsearch

enabled=1

o You can now install Elasticsearch by using the following command:

$ yum install elasticsearch

https://packages.elastic.co/GPG-KEY-elasticsearch
https://packages.elastic.co/GPG-KEY-elasticsearch

Elasticsearch

6

Step 4: Go to the Elasticsearch home directory and inside the bin folder. Run the

elasticsearch.bat file in case of windows or you can do the same using command prompt

and through terminal in case of UNIX rum Elasticsearch file.

In Windows:

> cd elasticsearch-2.1.0/bin

> elasticsearch

In Linux:

$ cd elasticsearch-2.1.0/bin

$./elasticsearch

Note: in case of windows, you might get error stating JAVA_HOME is not set, please set

it in environment variables to “C:\Program Files\Java\jre1.8.0_31” or the location where

you installed java.

Step 5: Default port for Elasticsearch web interface is 9200 or you can change it by

changing http.port inside elasticsearch.yml file present in bin directory. You can check if

the server is up and running by browsing http://localhost:9200. It will return a JSON

object, which contains the information about the installed Elasticsearch in the following

way:

{

 "name" : "Brain-Child",

 "cluster_name" : "elasticsearch",

 "version" : {

 "number" : "2.1.0",

 "build_hash" : "72cd1f1a3eee09505e036106146dc1949dc5dc87",

 "build_timestamp" : "2015-11-18T22:40:03Z",

 "build_snapshot" : false,

 "lucene_version" : "5.3.1"

 },

 "tagline" : "You Know, for Search"

}

http://localhost:9200/

Elasticsearch

7

Step 6: You can install fiddler2 from http://www.telerik.com/download/fiddler as a front

end for your Elasticsearch.

 In the configure window of fiddler2, you can hit the address of Elasticsearch

adding an index and if you want, then the type/mapping also using HTTP POST

method, for example:

Address bar

http://localhost:9200/schools/school

Request body

You can add JSON object, which will get store into that index.

 You can use the same for searching anything by just adding “_search” keyword

at the end of URL and sent a query in request body for example:

Address bar

POST http://localhost:9200/city/schools/_search

Request body

{

 "query":{

 "match_all":{}

 }

}

This query will return everything from that index, which belongs to that

particular type.

 You can delete a particular index or type by just putting the URL of the same in

address bar and hit it with HTTP DELETE method.

http://www.telerik.com/download/fiddler

Elasticsearch

8

In this section, we will add some index, mapping and data to Elasticsearch. This data will

be used in the examples explained in this tutorial.

Create Index

POST http://localhost:9200/schools

Request Body

It can contain index specific settings, but for now, it is empty for default settings.

Response

{"acknowledged": true}

(This means index is created)

Create Mapping and Add data

Elasticsearch will auto-create the mapping according to the data provided in request body,

we will use its bulk functionality to add more than one JSON object in this index.

POST http://localhost:9200/schools/_bulk

Request Body

{"index":{"_index":"schools", "_type":"school", "_id":"1"}}

{"name":"Central School", "description":"CBSE Affiliation", "street":"Nagan",
"city":"paprola", "state":"HP", "zip":"176115",
"location":[31.8955385,76.8380405], "fees":2000,

"tags":["Senior Secondary", "beautiful campus"],"rating":"3.5"}

{"index":{"_index":"schools", "_type":"school", "_id":"2"}}

{"name":"Saint Paul School", "description":"ICSE
Afiliation","street":"Dawarka","city":"Delhi","state":"Delhi","zip":"110075","l
ocation":[28.5733056,77.0122136],"fees":5000,

"tags":["Good Faculty", "Great Sports"],"rating":"4.5"}

{"index":{"_index":"schools", "_type":"school", "_id":"3"}}

{"name":"Crescent School", "description":"State Board Affiliation",
"street":"Tonk Road", "city":"Jaipur", "state":"RJ",

3. Elasticsearch – Populate Elasticsearch

Elasticsearch

9

"zip":"176114","location":[26.8535922,75.7923988],"fees":2500,"tags":["Well
equipped labs"],"rating":"4.5"}

Response

{"took":328,"errors":false,"items":[{"index":{"_index":"schools","_type":"schoo
l","_id":"1","_version":1,"_shards":{"total":2,"successful":1,"failed":0},"stat
us":201}},{"index":{"_index":"schools","_type":"school","_id":"2","_version":1,
"_shards":{"total":2,"successful":1,"failed":0},"status":201}},{"index":{"_inde
x":"schools","_type":"school","_id":"3","_version":1,"_shards":{"total":2,"succ
essful":1,"failed":0},"status":201}}]}

Add another Index

Create Index

POST http://localhost:9200/schools_gov

Request Body

It can contain index specific settings, but for now it’s empty for default settings.

Response

{"acknowledged": true} (This means index is created)

Create Mapping and Add Data

POST http://localhost:9200/schools_gov/_bulk

Request Body

{"index":{"_index":"schools_gov", "_type":"school", "_id":"1"}}

{"name":"Model School", "description":"CBSE Affiliation",

"street":"silk city", "city":"Hyderabad", "state":"AP", "zip":"500030",
"location":[17.3903703,78.4752129], "fees":200,

 "tags":["Senior Secondary", "beautiful campus"],"rating":"3"}

{"index":{"_index":"schools_gov", "_type":"school", "_id":"2"}}

Elasticsearch

10

{"name":"Government School", "description":"State Board Affiliation",
"street":"Hinjewadi", "city":"Pune", "state":"MH", "zip":"411057",

"location": [18.599752, 73.6821995],"fees":500,"tags":["Great
Sports"],"rating":"4"}

Response

{"took":179,"errors":false,"items":[{"index":{"_index":"schools_gov","_type":"s
chool","_id":"1","_version":1,"_shards":{"total":2,"successful":1,"failed":0},"
status":201}},{"index":{"_index":"schools_gov","_type":"school","_id":"2","_ver
sion":1,"_shards":{"total":2,"successful":1,"failed":0},"status":201}}]}

Elasticsearch

11

In any system or software, when we are upgrading to newer version, we need to follow a

few steps to maintain the application settings, configurations, data and other things. These

steps are required to make the application stable in new system or to maintain the integrity

of data (prevent data from getting corrupt).

The following are the steps to upgrade Elasticsearch:

 Read breaking changes docs from

https://www.elastic.co/guide/en/elasticsearch/reference/current/breaking-

changes.html

 Test the upgraded version in your non production environments like in UAT, E2E,

SIT or DEV environment.

 Rollback to previous Elasticsearch version is not possible without data backup. A

data backup is recommended before upgrading to a higher version.

 We can upgrade using full cluster restart or rolling upgrade. Rolling upgrade is for

new versions (for 2.x and newer). There is no service outage, when you are using

rolling upgrade method for migration.

Old Version New Version Upgrading Method

0.90.x 2.x Full cluster restart

1.x 2.x Full cluster restart

2.x 2.y Rolling upgrade (y > x)

 Take data backup before migration and follow the instructions to carry out the

backup process. The snapshot and restore module can be used to take backup. This

module can be used to take a snapshot of index or full cluster and can be stored in

remote repository.

Snapshot and Restore Module

Before starting the backup process, a snapshot repository needs to be registered in

Elasticsearch.

PUT /_snapshot/backup1

{

 "type": "fs",

 "settings": {

 ... repository settings ...

4. Elasticsearch — Migration between Versions

Elasticsearch

12

 }}

Note: The above text is a HTTP PUT request to http://localhost:9200/_snapshot/backup1

(there can be an IP address of the remote server instead of the localhost). Rest of the text

is request body. You can do this easily using fiddler2 and other web tools in Windows.

We use shared file system (type: fs) for backup; it needs to be registered in every master

and data nodes. We just need to add the path.repo variable having path of backup

repository as a value.

After we add the repository path, we need to restart the nodes and then registration can

be carried out by executing the following command:

PUT http://localhost:9200/_snapshot/backup1

{

 "type": "fs",

 "settings": {

 "location": "/mount/backups/backup1",

 "compress": true

 }

}

Full Cluster Restart

This upgrade process includes the following steps:

Step 1: Disable shard allocation process and turn off the node.

PUT http://localhost:9200/_cluster/settings

{

 "persistent": {

 "cluster.routing.allocation.enable": "none"

 }

}

In case of upgrading 0.90.x to 1.x use the following request:

PUT http://localhost:9200/_cluster/settings

{

 "persistent": {

 "cluster.routing.allocation.disable_allocation": false,

 "cluster.routing.allocation.enable": "none"

Elasticsearch

13

 }

}

Step 2: Make a synched flush to Elasticsearch:

POST http://localhost:9200/_flush/synced

Step 3: On all nodes, kill all the elastic services.

Step 4: Do the following on every node:

 In Debian or Red Hat Node: rmp or dpkg can be used to upgrade the node by

installing new packages. Do not overwrite config files.

 In Windows (zip file) or UNIX (tar file): Extract the new version without

overwriting the config directory. You can copy the files from old installation or can

change path.conf or path.data.

Step 5: Initiate the nodes again starting with the master node (nodes with node.master

set to true and node.data set to false) in the cluster. Wait for some time to establish a

cluster. You can check by monitoring the logs or using the following request:

GET _cat/health or http://localhost:9200/_cat/health

GET _cat/nodes or http://localhost:9200/_cat/health

Step 6: Monitor the progress of formation of cluster by using GET _cat/health request

and wait for the yellow in response, the response will be something like this:

 1451295971 17:46:11 elasticsearch yellow 1 1 5 5 0 0 5 0 - 50.0%

Step 7: Enable the shard allocation process, which was disabled in Step 1, by using the

following request:

PUT http://localhost:9200/_cluster/settings

{

 "persistent": {

 "cluster.routing.allocation.enable": "all"

 }

}

Elasticsearch

14

In case of upgrading 0.90.x to 1.x, use the following request:

PUT http://localhost:9200/_cluster/settings

{

 "persistent": {

 "cluster.routing.allocation.disable_allocation": true,

 "cluster.routing.allocation.enable": "all"

 }

}

Rolling Upgrades

It is same like Full cluster restart, except Step 3. Here, you stop one node and upgrade.

After upgrading, restart the node and repeat these for the all nodes. After enabling the

shard allocation process, it can be monitored by the following request:

GET http://localhost:9200/_cat/recovery

Elasticsearch

15

Application Programming Interface (API) in web is a group of function calls or other

programming instructions to access the software component in that particular web

application. For example, Facebook API helps a developer to create applications by

accessing data or other functionalities from Facebook; it can be date of birth or status

update.

Elasticsearch provides a REST API, which is accessed by JSON over HTTP. Elasticsearch

uses the following conventions:

Multiple Indices

Most of the operations, mainly searching and other operations, in APIs are for one or more

than one indices. This helps the user to search in multiple places or all the available data

by just executing a query once. Many different notations are used to perform operations

in multiple indices. We will discuss a few of them here in this section.

Comma Separated Notation

POST http://localhost:9200/index1,index2,index3/_search

Request Body

{

"query":{

 "query_string":{

 "query":"any_string"

 }

 }

}

Response

JSON objects from index1, index2, index3 having any_string in it.

_all keyword for all indices

POST http://localhost:9200/_all/_search

5. Elasticsearch — API Conventions

Elasticsearch

16

Request Body

{

 "query":{

 "query_string":{

 "query":"any_string"

 }

 }

}

Response

JSON objects from all indices and having any_string in it.

Wildcards (* , + , –)

POST http://localhost:9200/school*/_search

Request Body

{

"query":{

 "query_string":{

 "query":"CBSE"

 }

 }

}

Response

JSON objects from all indices which start with school having CBSE in it.

Alternatively, you can use the following code as well:

POST http://localhost:9200/school*,-schools_gov /_search

Elasticsearch

17

Request Body

{

 "query":{

 "query_string":{

 "query":"CBSE"

 }

 }

}

Response

JSON objects from all indices which start with “school” but not from schools_gov and

having CBSE in it.

 There are also some URL query string parameters:

 ignore_unavailable: No error will occur or operation will not be stopped, if the

one or more index present in URL does not exist. For example, schools index exist

but book_shops does not exist:

POST http://localhost:9200/school*,book_shops/_search

Request Body

{

 "query":{

 "query_string":{

 "query":"CBSE"

 }

 }

}

Response

{"error":{"root_cause":[{"type":"index_not_found_exception","reason":"no such
index","resource.type":"index_or_alias","resource.id":"book_shops","index":"boo
k_shops"}],"type":"index_not_found_exception","reason":"no such
index","resource.type":"index_or_alias","resource.id":"book_shops","index":"boo
k_shops"},"status":404}

Elasticsearch

18

Take a look at the following code:

POST http://localhost:9200/school*,book_shops/_search?ignore_unavailable=true

Request Body

{

 "query":{

 "query_string":{

 "query":"CBSE"

 }

 }

}

Response (no error)

JSON objects from all indices which start with school having CBSE in it.

allow_no_indices

true value of this parameter will prevent error, if a URL with wildcard results in no indices.

For example, there is no index that starts with schools_pri:

POST

http://localhost:9200/schools_pri*/_search?allow_no_indices=true

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response (No errors)

{"took":1,"timed_out": false, "_shards":{"total":0,"successful":0, "failed":0},
"hits":{"total":0,"max_score":0.0, "hits":[]}}

Elasticsearch

19

expand_wildcards

This parameter decides whether the wildcards need to be expanded to open indices or

closed indices or both. The value of this parameter can be open and closed or none and

all.

For example, close index schools:

POST http://localhost:9200/schools/_close

Response

{"acknowledged":true}

Take a look at the following code:

POST http://localhost:9200/school*/_search?expand_wildcards=closed

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response

{"error":{"root_cause":[{"type":"index_closed_exception","reason":"closed","ind
ex":"schools"}],"type":"index_closed_exception","reason":"closed","index":"scho
ols"},"status":403}

Date Math Support in Index Names

Elasticsearch offers a functionality to search indices according to date and time. We need

to specify date and time in a specific format. For example, accountdetail-2015.12.30, index

will store the bank account details of 30th December 2015. Mathematic operations can be

performed to get details for a particular date or a range of date and time.

Elasticsearch

20

Format for date math index name:

<static_name{date_math_expr{date_format|time_zone}}>

http://localhost:9200/<accountdetail-{now-2d{YYYY.MM.dd|utc}}>/_search

static_name is a part of expression which remains same in every date math index like

account detail. date_math_expr contains the mathematical expression that determines the

date and time dynamically like now-2d. date_format contains the format in which the date

is written in index like YYYY.MM.dd. If today’s date is 30th December 2015, then

<accountdetail-{now-2d{YYYY.MM.dd}}> will return accountdetail-2015.12.28.

Expression Resolves to

<accountdetail-{now-d}> accountdetail-2015.12.29

<accountdetail-{now-M}> accountdetail-2015.11.30

<accountdetail-{now{YYYY.MM}}> accountdetail-2015.12

We will now see some of the common options available in Elasticsearch that can be used

to get the response in a specified format.

Pretty Results

We can get response in a well-formatted JSON object by just appending a URL query

parameter, i.e., pretty=true.

POST http://localhost:9200/schools/_search?pretty=true

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response

……………………..

{

 "_index" : "schools",

 "_type" : "school",

Elasticsearch

21

 "_id" : "1",

 "_score" : 1.0,

"_source":{"name":"Central School", "description":"CBSE Affiliation",
"street":"Nagan", "city":"paprola", "state":"HP", "zip":"176115","location":
[31.8955385,76.8380405], "fees":2000,"tags":["Senior Secondary", "beautiful
campus"],"rating":"3.5"}

}

………………….

Human Readable Output

This option can change the statistical responses either into human readable form (If

human=true) or computer readable form (if human=false). For example, if human=true

then distance_kilometer = 20KM and if human = false then distance_meter = 20000, when

response needs to be used by another computer program.

Response Filtering

We can filter the response to less fields by adding them in the field_path parameter. For

example,

POST http://localhost:9200/schools/_search?filter_path=hits.total

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response

{"hits":{"total":3}}

Elasticsearch

22

Elasticsearch provides single document APIs and multi-document APIs, where the API call

is targeting single document and multiple documents respectively.

Index API

It helps to add or updates the JSON document in an index when a request is made to that

respective index with specific mapping. For example, the below request will add the JSON

object to index schools and under school mapping.

POST http://localhost:9200/schools/school/4

Request Body

{

"name":"City School",

"description":"ICSE",

"street":"West End", "city":"Meerut", "state":"UP", "zip":"250002",

"location":[28.9926174,77.692485],

"fees":3500,

"tags":["fully computerized"],

"rating":"4.5"

}

Response

{"_index":"schools","_type":"school","_id":"4","_version":1,"_shards":{"total":
2,"successful":1,"failed":0},"created":true}

Automatic Index Creation

When a request is made to add JSON object to a particular index and if that index does

not exist then this API automatically creates that index and also the underlying mapping

for that particular JSON object. This functionality can be disabled by changing the values

of following parameters to false, which are present in elasticsearch.yml file.

action.auto_create_index:false

index.mapper.dynamic:false

You can also restrict the auto creation of index, where only index name with specific

patterns are allowed by changing the value of the following parameter:

6. Elasticsearch — Document APIs

Elasticsearch

23

action.auto_create_index:+acc*,-bank*

(where + indicates allowed and – indicates not allowed)

Versioning

Elasticsearch also provides version control facility. We can use a version query parameter

to specify the version of a particular document. For example,

POST http://localhost:9200/schools/school/1?version=1

Request Body

{

"name":"Central School", "description":"CBSE Affiliation", "street":"Nagan",
"city":"paprola", "state":"HP", "zip":"176115",
"location":[31.8955385,76.8380405],"fees":2200,

 "tags":["Senior Secondary", "beautiful campus"],

"rating":"3.3"

}

Response

{"_index":"schools","_type":"school","_id":"1","_version":2,"_shards":{"total":
2,"successful":1,"failed":0},"created":false}

There are two most important types of versioning; internal versioning is the default version

that starts with 1 and increments with each update, deletes included. The version number

can be set externally. To enable this functionality, we need to set version_type to external.

Versioning is a real-time process and it is not affected by the real time search operations.

Operation Type

The operation type is used to force a create operation, this helps to avoid the overwriting

of existing document.

POST http://localhost:9200/tutorials/chapter/1?op_type=create

Request Body

{

 "Text":"this is chapter one"

}

Elasticsearch

24

Response

{"_index":"tutorials","_type":"chapter","_id":"1","_version":1,"_shards":{"tota
l":2,"successful":1,"failed":0},"created":true}

Automatic ID generation

When ID is not specified in index operation, then Elasticsearch automatically generates id

for that document.

Parents and Children

You can define the parent of any document by passing the id of parent document in parent

URL query parameter.

POST http://localhost:9200/tutorials/article/1?parent=1

Request Body

{

 "Text":"This is article 1 of chapter 1"

}

Note: If you get exception while executing this example, please recreate the index by

adding the following in the index.

{

 "mappings": {

 "chapter": {},

 "article": {

 "_parent": {

 "type": "chapter"

 }

 }

 }

}

Elasticsearch

25

Timeout

By default, the index operation will wait on the primary shard to become available for up

to 1 minute before failing and responding with an error. This timeout value can be changed

explicitly by passing a value to timeout parameter.

POST http://localhost:9200/tutorials/chapter/2?timeout=3m

Request Body

{

"Text":"This is chapter 2 waiting for primary shard for 3 minutes"

}

Get API

API helps to extract type JSON object by performing a get request for a particular

document. For example,

GET http://localhost:9200/schools/school/1

Response

{

"_index":"schools","_type":"school","_id":"1","_version":2,"found":true,"_sourc
e":{"name":"Central School", "description":"CBSE Affiliation",
"street":"Nagan", "city":"paprola", "state":"HP", "zip":"176115",
"location":[31.8955385,76.8380405], "fees":2200,

"tags":["Senior Secondary", "beautiful campus"],"rating":"3.3"}

}

 This operation is real time and does not get affected by the refresh rate of Index.

 You can also specify the version, then Elasticsearch will fetch that version of

document only.

 You can also specify the _all in the request, so that the Elasticsearch can search for

that document id in every type and it will return the first matched document.

 You can also specify the fields you want in your result from that particular document.

GET http://localhost:9200/schools/school/1?fields=name,fees

Elasticsearch

26

Response

……………………..

"fields":{

"name":["Central School"],

"fees":[2200]

}

……………………..

 You can also fetch the source part in your result by just adding _source part in your

get request.

GET http://localhost:9200/schools/school/1/_source

Response

{

"name":"Central School","description":"CBSE Afiliation", "street":"Nagan",
"city":"paprola", "state":"HP", "zip":"176115",
"location":[31.8955385,76.8380405], "fees":2200, "tags":["Senior
Secondary","beatiful campus"], "rating":"3.3"

}

You can also refresh the shard before doing get operation by set refresh parameter to

true.

Delete API

You can delete a particular index, mapping or a document by sending a HTTP DELETE

request to Elasticsearch. For example,

DELETE http://localhost:9200/schools/school/4

Response

{

"found":true,

"_index":"schools","_type":"school",

"_id":"4","_version":2,

"_shards":{"total":2,"successful":1,"failed":0}

}

Elasticsearch

27

 Version of the document can be specified to delete that particular version.

 Routing parameter can be specified to delete the document from a particular user

and the operation fails if the document does not belong to that particular user.

 In this operation, you can specify refresh and timeout option same like GET API.

Update API

Script is used for performing this operation and versioning is used to make sure that no

updates have happened during the get and re-index. For example, update the fees of

school using script:

POST http://localhost:9200/schools_gov/school/1/_update

Request Body

{

 "script":{

 "inline": "ctx._source.fees+=inc",

 "params":{

 "inc": 500

 }

 }

}

Response

{"_index":"schools_gov","_type":"school","_id":"1","_version":2,"_shards":{"tot
al":2,"successful":1,"failed":0}}

Note: If you get script exception, it is recommended to add the following lines in

elastcisearch.yml

script.inline: on

script.indexed: on

You can check the update by sending get request to the updated document.

GET http://localhost:9200/schools_gov/school/1

Elasticsearch

28

Multi Get API

It possesses same functionality like GET API, but this get request can return more than

one document. We use a doc array to specify the index, type and id of all the documents

that need to be extracted.

POST http://localhost:9200/_mget

Request Body

{

"docs":[{

 "_index": "schools",

 "_type": "school",

 "_id": "1"

 },

 {

 "_index":"schools_gev",

 "_type":"school",

 "_id": "2"

 }]

}

Response

{"docs":[{"_index":"schools","_type":"school","_id":"1","_version":1,"found":tr
ue,"_source":{"name":"Central School","description":"CBSE
Afiliation","street":"Nagan","city":"paprola",
"state":"HP","zip":"176115","location":[31.8955385,76.8380405],
"fees":2000,"tags":["Senior Secondary","beatiful campus"],"rating":"3.5"}

},{"_index":"schools_gev","_type":"school","_id":"2","error":{"root_cause":[{"t
ype":"index_not_found_exception","reason":"no such
index","index":"schools_gev"}],"type":"index_not_found_exception","reason":"no
such index","index":"schools_gev"}}]}

Bulk API

This API is used to upload or delete the JSON objects in bulk by making multiple

index/delete operations in a single request. We need to add “_bulk” keyword to call this

API. The example of this API is already performed in populate Elasticsearch article. All

other functionalities are same as of GET API.

Elasticsearch

29

This API is used to search content in Elasticsearch. Either a user can search by sending a

get request with query string as a parameter or a query in the message body of post

request. Mainly all the search APIS are multi-index, multi-type.

Multi-Index

Elasticsearch allows us to search for the documents present in all the indices or in some

specific indices. For example, if we need to search all the documents with a name that

contains central.

GET http://localhost:9200/_search?q=name:central

Response

{"took":78,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},
"hits":{"total":1,"max_score":0.19178301,"hits":[{"_index":"schools","_type":"s
chool","_id":"1","_score":0.19178301,"_source":{"name":"Central School",
"description":"CBSE Affiliation", "street":"Nagan", "city":"paprola",
"state":"HP", "zip":"176115","location":[31.8955385,76.8380405],
"fees":2000,"tags":["Senior Secondary", "beautiful campus"],"rating":"3.5"}}]}}

Or, we can search for the same in schools, schools_gov indices:

GET http://localhost:9200/schools,schools_gov/_search?q=name:model

Multi-Type

We can also search all the documents in an index across all types or in some specified

type. For example,

Get http://localhost:9200/schools/_search?q=tags:sports

Response

{"took":16,"timed_out":false,"_shards":{"total":5,"successful":5,"failed":0},"h
its":{"total":1,"max_score":0.5,"hits":[{"_index":"schools","_type":"school","_
id":"2","_score":0.5,"_source":{"name":"Saint Paul School", "description":"ICSE
Afiliation", "street":"Dawarka", "city":"Delhi", "state":"Delhi",
"zip":"110075", "location":[28.5733056,77.0122136], "fees":5000,"tags":["Good
Faculty", "Great Sports"],

"rating":"4.5"}}]}}

7. Elasticsearch — Search APIs

Elasticsearch

30

URI Search

Many parameters can be passed in a search operation using Uniform Resource Identifier:

Name Description

Q This parameter is used to specify query string

lenient
Format based errors can be ignored by just setting this parameter

to true. It is false by default.

fields This parameter helps us to get response from selective fields

sort

We can get sorted result by using this parameter, the possible

values for this parameter is fieldName,

fieldName:asc/fieldname:desc

timeout

We can restrict the search time by using this parameter and

response only contains the hits in that specified time. By default,

there is no timeout.

terminate_after

We can restrict the response to a specified number of documents

for each shard, upon reaching which the query will terminate

early. By default, there is no terminate_after.

from The starting from index of the hits to return. Defaults to 0.

size It denotes the number of hits to return. Defaults to 10.

Request Body Search

We can also specify query using query DSL in request body and there are many examples

already given in previous chapters like:

POST http://localhost:9200/schools/_search

Request Body

{

 "query":{

 "query_string":{

 "query":"up"

 }

 }

}

Elasticsearch

31

Response

……………………………………………….

"_source":{"name":"City School", "description":"ICSE", "street":"West End",
"city":"Meerut", "state":"UP", "zip":"250002",
"location":[28.9926174,77.692485], "fees":3500, "tags":["Well equipped
labs"],"rating":"4.5"}}

……………………………………………….

Elasticsearch

32

This framework collects all the data selected by the search query. This framework consists

of many building blocks, which help in building complex summaries of the data. The basic

structure of aggregation is presented below:

"aggregations" : {

 "<aggregation_name>" : {

 "<aggregation_type>" : {

<aggregation_body>

 }

 [,"meta" : { [<meta_data_body>] }]?

 [,"aggregations" : { [<sub_aggregation>]+ }]?

 }

}

There are different types of aggregations, each with its own purpose:

Metrics Aggregations

These aggregations help in computing matrices from the field’s values of the aggregated

documents and sometime some values can be generated from scripts.

Numeric matrices are either single-valued like average aggregation or multi-valued

like stats.

Avg Aggregation

This aggregation is used to get the average of any numeric field present in the aggregated

documents. For example,

POST http://localhost:9200/schools/_search

Request Body

{

 "aggs":{

 "avg_fees":{"avg":{"field":"fees"}}

 }

}

8. Elasticsearch — Aggregations

Elasticsearch

33

Response

{"took":44,"timed_out":false,"_shards":{"total":5,"successful":5,"failed":0},"h
its":{"total":3,"max_score":1.0,"hits":[{"_index":"schools","_type":"school","_
id":"2","_score":1.0,"_source":{"name":"Saint Paul School", "description":"ICSE
Affiliation", "street":"Dawarka", "city":"Delhi", "state":"Delhi",
"zip":"110075", "location":[28.5733056,77.0122136], "fees":5000, "tags":["Good
Faculty", "Great Sports"], "rating":"4.5"}

},{"_index":"schools","_type":"school","_id":"1","_score":1.0,"_source":{"name"
:"Central School", "description":"CBSE Affiliation", "street":"Nagan",
"city":"paprola", "state":"HP",
"zip":"176115","location":[31.8955385,76.8380405], "fees":2200,"tags":["Senior
Secondary", "beautiful
campus"],"rating":"3.3"}},{"_index":"schools","_type":"school","_id":"3","_scor
e":1.0,"_source":{"name":"Crescent School", "description":"State Board
Affiliation", "street":"Tonk Road", "city":"Jaipur",
"state":"RJ","zip":"176114", "location":[26.8535922,75.7923988],
"fees":2500,"tags":["Well equipped labs"], "rating":"4.5"}

}]},"aggregations":{"avg_fees":{"value":3233.3333333333335}}}

If the value is not present in one or more aggregated documents, it gets ignored by default.

You can add a missing field in the aggregation for treating missing value as default.

{

 "aggs":{

 "avg_fees":{"avg":{

 "field":"fees"

 "missing":0}

 }

 }

}

Cardinality Aggregation

This aggregation gives the count of distinct values of a particular field. For example,

POST http://localhost:9200/schools*/_search

Request Body

{

"aggs":{ "distinct_name_count":{"cardinality":{"field":"name"}}

 }

Elasticsearch

34

}}

Response

………………………………………………

{"name":"Government School", "description":"State Board
Afiliation","street":"Hinjewadi","city":"Pune","state":"MH","zip":"411057","loc
ation":[18.599752,73.6821995],"fees":500,"tags":["Great Sports"],"rating":"4"}

}, {"_index":"schools_gov", "_type": "school","_id":"1",
"_score":1.0,"_source":{"name":"Model School", "description":"CBSE
Affiliation", "street":"silk
city","city":"Hyderabad","state":"AP","zip":"500030","location":[17.3903703,78.
4752129],"fees":700,"tags":["Senior Secondary", "beautiful
campus"],"rating":"3"}}]}, "aggregations":{"disticnt_name_count":{"value":3}}}

………………………………………………

Note: The value of cardinality is 3 because there are three distinct values in name —

Government, School and Model.

Extended Stats Aggregation

This aggregation generates all the statistics about a specific numerical field in aggregated

documents. For example,

POST http://localhost:9200/schools/school/_search

Request Body

{

 "aggs" : {

 "fees_stats" : { "extended_stats" : { "field" : "fees" } }

 }

}

Response

………………………………………………

"aggregations":{"fees_stats":{"count":3,"min":2200.0,"max":5000.0,"avg":3233.33
33333333335,"sum":9700.0,"sum_of_squares":3.609E7,"variance":1575555.555555556,
"std_deviation":1255.2113589175156,"std_deviation_bounds":{"upper":5743.7560511
68364,"lower":722.9106154983024}}}}

………………………………………………

Elasticsearch

35

Max Aggregation

This aggregation finds the max value of a specific numeric field in aggregated documents.

For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "aggs" : {

 "max_fees" : { "max" : { "field" : "fees" } }

 }

}

Response

……………………………………………

aggregations":{"max_fees":{"value":5000.0}}

……………………………………………

Min Aggregation

This aggregation finds the max value of a specific numeric field in aggregated documents.

For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "aggs" : {

 "min_fees" : { "min" : { "field" : "fees" } }

 }

}

Response

………………………………………………

"aggregations":{"min_fees":{"value":500.0}}

……………………………………………

Elasticsearch

36

Sum Aggregation

This aggregation calculates the sum of a specific numeric field in aggregated documents.

For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "aggs" : {

 "total_fees" : { "sum" : { "field" : "fees" } }

 }

}

Response

………………………………………………

"aggregations":{"total_fees":{"value":10900.0}}

………………………………………………

There are some other metrics aggregations which are used in special cases like geo bounds

aggregation and geo centroid aggregation for the purpose of geo location.

Bucket Aggregations

These aggregations contain many buckets for different types of aggregations having a

criterion, which determines whether a document belongs to that bucket or not. The bucket

aggregations have been described below:

Children Aggregation

This bucket aggregation makes a collection of documents, which are mapped to parent

bucket. A type parameter is used to define the parent index. For example, we have a brand

and its different models, and then the model type will have the following _parent field:

{

 "model" : {

 "_parent" : {

 "type" : "brand"

 }

 }

Elasticsearch

37

}

There are many other special bucket aggregations, which are useful in many other cases,

those are:

 Date Histogram Aggregation

 Date Range Aggregation

 Filter Aggregation

 Filters Aggregation

 Geo Distance Aggregation

 GeoHash grid Aggregation

 Global Aggregation

 Histogram Aggregation

 IPv4 Range Aggregation

 Missing Aggregation

 Nested Aggregation

 Range Aggregation

 Reverse nested Aggregation

 Sampler Aggregation

 Significant Terms Aggregation

 Terms Aggregation

Aggregation Metadata

You can add some data about the aggregation at the time of request by using meta tag

and can get that in response. For example,

POST http://localhost:9200/school*/report/_search

Elasticsearch

38

Request Body

{

 "aggs" : {

 "min_fees" : { "avg" : { "field" : "fees" } ,

 "meta" :{

 "dsc" :"Lowest Fees"

 }}

 }

}

Response

………………………………………………

"aggregations":{"min_fees":{"meta":{"dsc":"Lowest Fees"}, "value":2180.0}}

………………………………………………

Elasticsearch

39

These APIs are responsible for managing all the aspects of index like settings, aliases,

mappings, index templates.

Create Index

This API helps you to create index. Index can be created automatically when a user is

passing JSON objects to any index or it can be created before that. To create an index,

you just need to send a post request with settings, mappings and aliases or just a simple

request without body. For example,

POST http://localhost:9200/colleges

Response

{"acknowledged":true}

Or, with some settings –

POST http://localhost:9200/colleges

Request Body

{

 "settings" : {

 "index" : {

 "number_of_shards" : 5,

 "number_of_replicas" : 3

 }

 }

}

Response

{"acknowledged":true}

9. Elasticsearch — Index APIs

Elasticsearch

40

Or with mapping –

POST http://localhost:9200/colleges

Request Body

{

 "settings" : {

 "number_of_shards" : 3

 },

 "mappings" : {

 "type1" : {

 "_source" : { "enabled" : false },

 "properties" : {

 "college_name" : { "type" : "string" },

 "college type" : {"type":"string"}

 }

 }

 }

}

Response

{"acknowledged":true}

Or, with alias –

POST http://localhost:9200/colleges

Request Body

{

"aliases" : {

 "alias_1" : {},

 "alias_2" : {

 "filter" : {

 "term" : {"user" : "manu" }

 },

 "routing" : "manu"

Elasticsearch

41

 }

 }

}

}

Response

{"acknowledged":true}

Delete Index

This API helps you to delete any index. You just need to pass a delete request with the

URL of that particular Index. For example,

DELETE http://localhost:9200/colleges

You can delete all indices by just using _all,*.

Get Index

This API can be called by just sending get request to one or more than one indices. This

returns the information about index.

GET http://localhost:9200/schools

Response

{"schools":{"aliases":{},"mappings":{"school":{"properties":{"city":{"type":"st
ring"},"description":{"type":"string"},"fees":{"type":"long"},"location":{"type
":"double"},"name":{"type":"string"},"rating":{"type":"string"},"state":{"type"
:"string"},"street":{"type":"string"},"tags":{"type":"string"},"zip":{"type":"s
tring"}}}},"settings":{"index":{"creation_date":"1454409831535","number_of_shar
ds":"5","number_of_replicas":"1","uuid":"iKdjTtXQSMCW4xZMhpsOVA","version":{"cr
eated":"2010199"}}},"warmers":{}}}

You can get the information of all the indices by using _all or *.

Index Exist

Existence of an index can be determined by just sending a get request to that index. If

the HTTP response is 200, it exists; if it is 404, it does not exist.

Elasticsearch

42

Open / Close Index API

It’s very easy to close or open one or more index by just adding _close or _open in post

to request to that index. For example,

POST http://localhost:9200/schools/_close

Or

POST http://localhost:9200/schools/_open

Index Aliases

This API helps to give an alias to any index by using _aliases keyword. Single alias can be

mapped to more than one and alias cannot have the same name as index. For example,,

POST http://localhost:9200/_aliases

Request Body

{

 "actions" : [

 { "add" : { "index" : "schools", "alias" : "schools_pri" } }

]

}

Response

{"acknowledged":true}

Then,

GET http://localhost:9200/schools_pri

Response

………………………………………………

{"schools":{"aliases":{"schools_pri":{}},"

………………………………………………

Elasticsearch

43

Index Settings

You can get the index settings by just appending _settings keyword at the end of URL. For

example,

GET http://localhost:9200/schools/_settings

Response

{"schools":{"settings":{"index":{"creation_date":"1454409831535","number_of_sha
rds":"5","number_of_replicas":"1","uuid":"iKdjTtXQSMCW4xZMhpsOVA","version":{"c
reated":"2010199"}}}}}

Analyze

This API helps to analyze the text and send the tokens with offset value and data type.

For example,

POST http://localhost:9200/_analyze

Request Body

{

 "analyzer" : "standard",

 "text" : "you are reading this at tutorials point"

}

Response

{"tokens":[{"token":"you","start_offset":0,"end_offset":3,"type":"<ALPHANUM>","
position":0},

{"token":"are","start_offset":4,"end_offset":7,"type":"<ALPHANUM>","position":1
},

{"token":"reading","start_offset":8,"end_offset":15,"type":"<ALPHANUM>","positi
on":2},

{"token":"this","start_offset":16,"end_offset":20,"type":"<ALPHANUM>","position
":3},

{"token":"at","start_offset":21,"end_offset":23,"type":"<ALPHANUM>","position":
4},

{"token":"tutorials","start_offset":24,"end_offset":33,"type":"<ALPHANUM>","pos
ition":5},

{"token":"point","start_offset":34,"end_offset":39,"type":"<ALPHANUM>","positio
n":6}]}

Elasticsearch

44

You can also analyze a text with any index, and then the text will be analyzed according

to the analyzer associated with that index.

Index Templates

You can also create index templates with mappings, which can be applied to new indices.

For example,

POST http://localhost:9200/_template/template_a

Request Body

{

 "template" : "tu*",

 "settings" : {

 "number_of_shards" : 3

 },

 "mappings" : {

 "chapter" : {

 "_source" : { "enabled" : false }

 }

 }

}

Any index that starts with “tu” will have the same settings as template_a.

Index Stats

This API helps you to extract statistics about a particular index. You just need to send a

get request with the index URL and _stats keyword at the end.

GET http://localhost:9200/schools/_stats

Response

………………………………………………

{"_shards":{"total":10,"successful":5,"failed":0},"_all":{"primaries":{"docs":{
"count":3,"deleted":0},"store":{"size_in_bytes":16653,"throttle_time_in_millis"
:0},

………………………………………………

Elasticsearch

45

Flush

This API helps to clean the data from index memory and migrate it to index storage and

also cleans internal transaction log. For example,

GET http://localhost:9200/schools/_flush

Response

{"_shards":{"total":10,"successful":5,"failed":0}}

Refresh

Refresh is scheduled by default in Elasticsearch, but you can refresh one or more indices

explicitly by using _refresh. For example,

GET http://localhost:9200/schools/_refresh

Response

{"_shards":{"total":10,"successful":5,"failed":0}}

Elasticsearch

46

This API is used for getting information about cluster and its nodes and making changes

in them. For calling this API, we need to specify the node name, address or _local. For

example,

GET http://localhost:9200/_nodes/_local

Response

………………………………………………

{"cluster_name":"elasticsearch","nodes":{"Vy3KxqcHQdm4cIM22U1ewA":{"name":"Red
Guardian","transport_address":"127.0.0.1:9300","host":"127.0.0.1","ip":"127.0.0
.1","version":"2.1.1","build":"40e2c53","http_address":"127.0.0.1:9200",

………………………………………………

Or

Get http://localhost:9200/_nodes/127.0.0.1

Response

Same as in the above example.

Cluster Health

This API is used to get the status on the health of the cluster by appending health keyword.

For example,

GET http://localhost:9200/_cluster/health

Response

{"cluster_name":"elasticsearch","status":"yellow","timed_out":false,"number_of_
nodes":1,"number_of_data_nodes":1,"active_primary_shards":23,"active_shards":23
,"relocating_shards":0,"initializing_shards":0,"unassigned_shards":23,"delayed_
unassigned_shards":0,"number_of_pending_tasks":0,"number_of_in_flight_fetch":0,
"task_max_waiting_in_queue_millis":0,"active_shards_percent_as_number":50.0}

Cluster State

This API is used to get state information about a cluster by appending ‘state’ keyword URL.

The state information contains version, master node, other nodes, routing table, metadata

and blocks. For example,

10. Elasticsearch — Cluster APIs

Elasticsearch

47

GET http://localhost:9200/_cluster/state

Response

………………………………………………

{"cluster_name":"elasticsearch","version":27,"state_uuid":"B3P7uHGKQUGsSsiX2rGY
UQ","master_node":"Vy3KxqcHQdm4cIM22U1ewA",

………………………………………………

Cluster Stats

This API helps to retrieve statistics about cluster by using ‘stats’ keyword. This API returns

shard number, store size, memory usage, number of nodes, roles, OS, and file system.

For example,

GET http://localhost:9200/_cluster/stats

Response

………………………………………………

{"timestamp":1454496710020,"cluster_name":"elasticsearch","status":"yellow","in
dices":{"count":5,"shards":{"total":23,"primaries":23,"replication":0.0,"

………………………………………………

Pending Cluster Tasks

This API is used for monitoring pending tasks in any cluster. Tasks are like create index,

update mapping, allocate shard, fail shard etc. For example,

GET http://localhost:9200/_cluster/pending_tasks

Cluster Reroute

This API is used for moving shard from one node to another or to cancel any allocation or

allocate any unassigned shard. For example,

POST http://localhost:9200/_cluster/reroute

Elasticsearch

48

Request Body

{

 "commands" : [{

 "move" :

 {

 "index" : "schools", "shard" : 2,

 "from_node" : "nodea", "to_node" : "nodeb"

 }

 },

 {

 "allocate" : {

 "index" : "test", "shard" : 1, "node" : "nodec"

 }

 }

]

}

Cluster Update Settings

This API allows you to update the settings of a cluster by using settings keyword. There

are two types of settings — persistent (applied across restarts) and transient (do not

survive a full cluster restart).

Node Stats

This API is used to retrieve the statistics of one more nodes of the cluster. Node stats are

almost the same as cluster. For example,

GET http://localhost:9200/_nodes/stats

Response

………………………………………………

{"cluster_name":"elasticsearch","nodes":{"Vy3KxqcHQdm4cIM22U1ewA":{"timestamp":
1454497097572,"name":"Red
Guardian","transport_address":"127.0.0.1:9300","host":"127.0.0.1","ip":["127.0.
0.1:9300",

………………………………………………

Elasticsearch

49

Nodes hot_threads

This API helps you to retrieve information about the current hot threads on each node in

cluster. For example,

GET http://localhost:9200/_nodes/hot_threads

Response

………………………………………………

::: {Red Guardian} {Vy3KxqcHQdm4cIM22U1ewA} {127.0.0.1}{127.0.0.1:9300}Hot
threads at 2016-02-03T10:59:48.856Z, interval=500ms, busiestThreads=3,
ignoreIdleThreads=true:0.0% (0s out of 500ms) cpu usage by thread 'Attach
Listener'

 unique snapshot

 unique snapshot

………………………………………………

Elasticsearch

50

In Elasticsearch, searching is carried out by using query based on JSON. Query is made

up of two clauses:

 Leaf Query Clauses – These clauses are match, term or range, which look for a

specific value in specific field.

 Compound Query Clauses – These queries are a combination of leaf query

clauses and other compound queries to extract the desired information.

Elasticsearch supports a large number of queries. A query starts with a query key word

and then has conditions and filters inside in the form of JSON object. The different types

of queries have been described below:

Match All Query

This is the most basic query; it returns all the content and with the score of 1.0 for every

object. For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response

{"took":1,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},"
hits":{"total":5,"max_score":1.0,"hits":[{"_index":"schools","_type":"school","
_id":"2","_score":1.0,"_source":{"name":"Saint Paul School",
"description":"ICSE Affiliation", "street":"Dawarka",
"city":"Delhi","state":"Delhi","zip":"110075","location":[28.5733056,77.0122136
],"fees":5000,"tags":["Good Faculty", "Great Sports"],"rating":"4.5"}

},{"_index":"schools_gov", "_type":"school", "_id":"2","_score":1.0,
"_source":{"name":"Government School", "description":"State Board Affiliation",
"street":"Hinjewadi", "city":"Pune", "state":"MH",
"zip":"411057","location":[18.599752,73.6821995],"fees":500,"tags":["Great
Sports"],"rating":"4"}

},{"_index":"schools","_type":"school","_id":"1","_score":1.0,"_source":{"name"
:"Central School", "description":"CBSE Affiliation", "street":"Nagan",
"city":"paprola", "state":"HP",

11. Elasticsearch — Query DSL

Elasticsearch

51

"zip":"176115","location":[31.8955385,76.8380405], "fees":2200,"tags":["Senior
Secondary", "beautiful
campus"],"rating":"3.3"}},{"_index":"schools_gov","_type":"school","_id":"1","_
score":1.0,"_source":{"name":"Model School", "description":"CBSE Affiliation",
"street":"silk city", "city":"Hyderabad", "state":"AP", "zip":"500030",
"location":[17.3903703,78.4752129], "fees":700,"tags":["Senior Secondary",
"beautiful
campus"],"rating":"3"}},{"_index":"schools","_type":"school","_id":"3","_score"
:1.0,"_source":{"name":"Crescent School", "description":"State Board
Affiliation", "street":"Tonk Road",
"city":"Jaipur","state":"RJ","zip":"176114","location":[26.8535922,75.7923988],
"fees":2500,"tags":["Well equipped labs"], "rating":"4.5"}}]}}

Full Text Queries

These queries are used to search a full body of text like a chapter or a news article. This

query works according to the analyzer associated with that particular index or document.

In this section, we will discuss the different types of full text queries.

Match query

This query matches a text or phrase with the values of one or more fields. For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "query":{

 "match" : {

 "city":"pune"

 }

 }

}

Response

{"took":1,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},"
hits":{"total":1,"max_score":0.30685282,"hits":[{"_index":"schools_gov","_type"

Elasticsearch

52

:"school","_id":"2","_score":0.30685282,"_source":{"name":"Government School",
"description":"State Board
Afiliation","street":"Hinjewadi","city":"Pune","state":"MH","zip":"411057","loc
ation":[18.599752,73.6821995],"fees":500,"tags":["Great Sports"],"rating":"4"}

}]}}

multi_match query

This query matches a text or phrase with more than one field. For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "query":{

 "multi_match" : {

 "query": "hyderabad",

 "fields": ["city", "state"]

 }

 }

}

Response

{"took":16,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},
"hits":{"total":1,"max_score":0.09415865,"hits":[{"_index":"schools_gov","_type
":"school","_id":"1","_score":0.09415865,"_source":{"name":"Model School","
description":"CBSE Affiliation", "street":"silk
city","city":"Hyderabad","state":"AP","zip":"500030","location":[17.3903703,78.
4752129],"fees":700,"tags":["Senior Secondary", "beautiful
campus"],"rating":"3"}}]}}

Query String Query

This query uses query parser and query_string keyword. For example,

POST http://localhost:9200/schools/_search

Request Body

{

 "query":{

Elasticsearch

53

 "query_string":{

 "query":"good faculty"

 }

 }

}

Response

{"took":16,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},
"hits":{"total":1,"max_score":0.09492774,"hits":[{"_index":"schools","_type":"s
chool","_id":"2","_score":0.09492774,"_source":{"name":"Saint Paul School",
"description":"ICSE Affiliation", "street":"Dawarka", "city":"Delhi",
"state":"Delhi", "zip":"110075", "location":[28.5733056,77.0122136],
"fees":5000, "tags":["Good Faculty", "Great Sports"], "rating":"4.5" }}]}}

Term Level Queries

These queries mainly deal with structured data like numbers, dates and emuns. For

example,

POST http://localhost:9200/schools/_search

Request Body

{

 "query":{

 "term":{"zip":"176115"}

 }

}

Response

{"took":1,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},"
hits":{"total":1,"max_score":0.30685282,"hits":[{"_index":"schools","_type":"sc
hool","_id":"1","_score":0.30685282,"_source":{"name":"Central School",
"description":"CBSE Affiliation", "street":"Nagan", "city":"paprola",
"state":"HP", "zip":"176115", "location":[31.8955385,76.8380405],
"fees":2200,"tags":["Senior Secondary", "beautiful campus"],"rating":"3.3"}}]}}

Range Query

This query is used to find the objects having values between the ranges of values. For this,

we need to use operators like

Elasticsearch

54

 gte - greater than equal to

 gt - greater-than

 lte - less-than equal to

 lt - less-than

For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "query":{

 "range":{

 "rating":{

 "gte":3.5

 }

 }

 }

}

Response

{"took":31,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},
"hits":{"total":3,"max_score":1.0,"hits":[{"_index":"schools","_type":"school",
"_id":"2","_score":1.0,"_source":{"name":"Saint Paul School",
"description":"ICSE Affiliation", "street":"Dawarka",
"city":"Delhi","state":"Delhi","zip":"110075","location":[28.5733056,77.0122136
],"fees":5000,"tags":["Good Faculty", "Great Sports"],"rating":"4.5"}

},{"_index":"schools_gov", "_type":"school",
"_id":"2","_score":1.0,"_source":{"name":"Government School",
"description":"State Board Affiliation", "street":"Hinjewadi", "city":"Pune",
"state":"MH", "zip":"411057", "location":[18.599752,73.6821995]
"fees":500,"tags":["Great Sports"],"rating":"4"}}, {"_index":"schools",
"_type":"school", "_id":"3", "_score":1.0,"_source":{"name":"Crescent School",
"description":"State Board Affiliation", "street":"Tonk Road", "city":"Jaipur",
"state":"RJ", "zip":"176114",
"location":[26.8535922,75.7923988],"fees":2500,"tags":["Well equipped
labs"],"rating":"4.5"}}]}}

Other types of term level queries are:

 Exists query: If a certain field has non null value.

Elasticsearch

55

 Missing query: This is completely opposite to exists query, this query searches

for objects without specific fields or fields having null value.

 Wildcard or regexp query: This query uses regular expressions to find patterns

in the objects.

Type query: documents with specific type. For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "query":{

 "type" : {

 "value" : "school"

 }

 }

}

Response

All the school JSON objects present in the specified indices.

Compound Queries

These queries are a collection of different queries merged with each other by using Boolean

operators like and, or, not or for different indices or having function calls etc. For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "query":{

 "filtered":{

 "query":{

 "match":{

 "state":"UP"

 }

 },

 "filter":{

Elasticsearch

56

 "range":{

 "rating":{

 "gte":4.0

 }

 }

 }

}

}

}

Response

{"took":16,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},
"hits":{"total":0,"max_score":null,"hits":[]}}

Joining Queries

These queries are used where more than one mapping or document is included. There are

two types of joining queries:

Nested Query

These queries deal with nested mapping (you will read more about it in the next chapter).

has_child and has_parent queries

These queries are used to retrieve child or parent of the document, which got match in

the query. For example,

POST http://localhost:9200/tutorials/_search

Request Body

{

"query":

 {

 "has_child" : {

 "type" : "article",

 "query" : {

 "match" : {

 "Text" : "This is article 1 of chapter 1"

Elasticsearch

57

 }

 }

 }

 }

}

Response

{"took":21,"timed_out":false,"_shards":{"total":5,"successful":5,"failed":0},"h
its":{"total":1,"max_score":1.0,"hits":[{"_index":"tutorials","_type":"chapter"
,"_id":"1","_score":1.0,"_source":{

"Text":"this is chapter one"}}]}}

Geo Queries

These queries deal with geo locations and geo points. These queries help to find out schools

or any other geographical object near to any location. You need to use geo point data

type. For example,

POST http://localhost:9200/schools*/_search

Request Body

{

 "query":{

 "filtered":{

 "filter":{

 "geo_distance":{

 "distance":"100km",

 "location":[32.052098, 76.649294]

 }

 }

 }

 }

}

Response

Elasticsearch

58

{"took":6,"timed_out":false,"_shards":{"total":10,"successful":10,"failed":0},"
hits":{"total":2,"max_score":1.0,"hits":[{"_index":"schools","_type":"school","
_id":"2","_score":1.0,"_source":{"name":"Saint Paul School",
"description":"ICSE Affiliation",
"street":"Dawarka","city":"Delhi","state":"Delhi","zip":"110075","location":[28
.5733056,77.0122136],"fees":5000,"tags":["Good Faculty", "Great
Sports"],"rating":"4.5"}

},{"_index":"schools", "_type":"school", "_id":"1","_score":1.0,
"_source":{"name":"Central School", "description":"CBSE Affiliation",
"street":"Nagan", "city":"paprola", "state":"HP", "zip":"176115",
"location":[31.8955385,76.8380405], "fees":2000,"tags":["Senior Secondary",
"beautiful campus"],"rating":"3.5"}}]}}

Note: If you get an exception while performing the above example, please add the

following mapping to your index.

{

 "mappings":{

 "school":{

 "_all":{

 "enabled":true

 },

 "properties":{

 "location":{

 "type":"geo_point"

 }

 }

 }}}

Elasticsearch

59

Mapping is the outline of the documents stored in an index. It defines the data type like

geo_point or string and format of the fields present in the documents and rules to control

the mapping of dynamically added fields. For example,

POST http://localhost:9200/bankaccountdetails

Request Body

{

"mappings":{

 "report":{

 "_all":{

 "enabled":true

 },

 "properties":{

 "name":{ "type":"string"},

 "date":{ "type":"date"},

 "balance":{ "type":"double"},

 "liability":{ "type":"double"}

 }

 }

 }

}

Response

{"acknowledged":true}

Field Data Types

Elasticsearch supports a number of different datatypes for the fields in a document. The

following data types are used to store fields in Elasticsearch:

Core Data Types

These are the basic data types supported by almost all the systems like integer, long,

double, short, byte, double, float, string, date, Boolean and binary.

12. Elasticsearch — Mapping

Elasticsearch

60

Complex Data Types

These data types are a combination of core data types. Like array, JSON object and nested

data type. Following is the example of nested data type:

POST http://localhost:9200/tabletennis/team/1

Request Body

{

 "group" : "players",

 "user" : [

 {

 "first" : "dave",

 "last" : "jones"

 },

 {

 "first" : "kevin",

 "last" : "morris"

 }

]

}

Response

{"_index":"tabletennis","_type":"team","_id":"1","_version":1,"_shards":{"total
":2,"successful":1,"failed":0},"created":true}

Geo Data Types

These data types are used for defining geographic properties. For instance, geo_point is

used for defining longitude and latitude, and geo_shape for defining different geometric

shapes like rectangle.

Specialized Data Types

These data types are used for special purposes like IPv4 (“ip”) accepts IP address,

completion data type is used to support auto-complete suggestions and token_count for

counting the number of tokens in a string.

Elasticsearch

61

Mapping Types

Each index has one or more mapping types, which are used to divide the documents of an

index into logical groups. Mapping can be different from each other on the basis of the

following parameters:

Meta-Fields

These fields provide information about the mappings and the other objects associated with

it. Like _index, _type, _id, and _source fields.

Fields

Different mapping contains different number of fields and fields with different data types.

Dynamic Mapping

Elasticsearch provides a user-friendly mechanism for the automatic creation of mapping.

A user can post the data directly to any undefined mapping and Elasticsearch will

automatically create the mapping, which is called dynamic mapping. For example,

POST http://localhost:9200/accountdetails/tansferreport

Request Body

{

 "from_acc":"7056443341",

 "to_acc":"7032460534",

 "date":"11/1/2016",

 "amount":10000

}

Response

{

 "_index":"accountdetails",

 "_type":"tansferreport",

 "_id":"AVI3FeH0icjGpNBI4ake",

 "_version":1,

 "_shards":{"total":2,"successful":1,"failed":0},

 "created":true

}

Elasticsearch

62

Mapping Parameters

The mapping parameters define the structure of mapping, information about fields and

about storage and how the mapped data will be analyzed at the time of searching. These

are the following mapping parameters:

 analyzer

 boost

 coerce

 copy_to

 doc_values

 dynamic

 enabled

 fielddata

 geohash

 geohash_precision

 geohash_prefix

 format

 ignore_above

 ignore_malformed

 include_in_all

 index_options

 lat_lon

 index

 fields

 norms

 null_value

 position_increment_gap

 properties

 search_analyzer

 similarity

 store

 term_vector

Elasticsearch

63

When a query is processed during a search operation , the content in any index is analyzed

by analysis module. This module consists of analyzer, tokenizer, tokenfilters and

charfilters. If no analyzer is defined, then by default the built in analyzers, token, filters

and tokenizers get registered with analysis module. For example,

POST http://localhost:9200/pictures

Request Body

{

 "settings": {

 "analysis": {

 "analyzer": {

 "index_analyzer": {

 "tokenizer": "standard",

 "filter": ["standard", "my_delimiter", "lowercase", "stop",
"asciifolding", "porter_stem"]

 },

 "search_analyzer": {

 "tokenizer": "standard",

 "filter": ["standard", "lowercase", "stop", "asciifolding",
"porter_stem"]

 }

 },

 "filter": {

 "my_delimiter": {

 "type": "word_delimiter",

 "generate_word_parts": true,

 "catenate_words": true,

 "catenate_numbers": true,

 "catenate_all": true,

 "split_on_case_change": true,

 "preserve_original": true,

 "split_on_numerics": true,

 "stem_english_possessive": true

 }

13. Elasticsearch — Analysis

Elasticsearch

64

 }

 }

 }

}

Analyzers

An analyzer consists of a tokenizer and optional token filters. These analyzers are

registered in analysis module with logical names, which can be referenced either in

mapping definitions or in some APIs. There are a number of default analyzers as follows:

S No. Analyzer Description

1
Standard analyzer

(standard)

stopwords and max_token_lenght setting can be

set for this analyzer. By default, stopwords list is

empty and max_token_lenght is 255.

2 Simple analyzer (simple) This analyzer is composed of lowercase tokenizer.

3
Whitespace analyzer

(whitespace)

This analyzer is composed of whitespace

tokenizer.

4 Stop analyzer (stop)

stopwords and stopwords_path can be configured.

By default stopwords initialized to English stop

words and stopwords_path contains path to a text

file with stop words.

5
Keyword analyzer

(keyword)

This analyzer tokenizes an entire stream as a

single token. It can be used for zip code.

6
Pattern analyzer

(pattern)

This analyzer mainly deals with regular

expressions. Settings like lowercase, pattern,

flags, stopwords can be set in this analyzer.

7 Language analyzer
This analyzer deals with languages like hindi,

arabic, ducth etc.

8
Snowball analyzer

(snowball)

This analyzer uses the standard tokenizer, with

standard filter, lowercase filter, stop filter, and

snowball filter.

9
Custom analyzer

(custom)

This analyzer is used to create customized

analyzer with a tokenizer with optional token

filters and char filters. Settings like tokenizer,

filter, char_filter and position_increment_gap can

be configured in this analyzer.

Elasticsearch

65

Tokenizers

Tokenizers are used for generating tokens from a text in Elasticsearch. Text can be broken

down into tokens by taking whitespace or other punctuations into account. Elasticsearch

has plenty of built-in tokenizers, which can be used in custom analyzer.

S No. Tokenizer Description

1
Standard tokenizer

(standard)

This is built on grammar based tokenizer and

max_token_lenght can be configured for this

tokenizer.

2
Edge NGram tokenizer

(edgeNGram)

Settings like min_gram, max_gram, token_chars

can be set for this tokenizer.

3
Keyword tokenizer

(keyword)

This generates entire input as an output and

buffer_size can be set for this.

4 Letter tokenizer (letter)
This captures the whole word until a non-letter is

encountered.

5
Lowercase tokenizer

(lowercase)

This works the same as the letter tokenizer, but

after creating tokens, it changes them to lower

case.

6
NGram Tokenizer

(nGram)

Settings like min_gram (default value is 1),

max_gram (default value is 2) and token_chars

can be set for this tokenizer.

7
Whitespace tokenizer

(whitespace)
This divides text on the basis of whitespaces.

8
Pattern tokenizer

(pattern)

This uses regular expressions as a token

separator. Pattern, flags and group settings can

be set for this tokenizer.

9
UAX Email URL Tokenizer

(uax_url_email)

This works same lie standard tokenizer but it

treats email and URL as single token.

10
Path hierarchy tokenizer

(path_hierarchy)

This tokenizer generated all the possible paths

present in the input directory path. Settings

available for this tokenizer are delimiter (defaults

to /), replacement, buffer_size (defaults to

1024), reverse (defaults to false) and skip

(defaults to 0).

11 Classic tokenizer (classic)

This works on the basis of grammar based

tokens. Max_token_lenght can be set for this

tokenizer.

12 Thai tokenizer (thai)
This tokenizer is used for Thai language and uses

built-in Thai segmentation algorithm.

Elasticsearch

66

Token Filters

Token filters receive input from tokenizers and then these filters can modify, delete or add

text in that input. Elasticsearch offers plenty of built-in token filters. Most of them have

already been explained in previous sections.

Character Filters

These filters process the text before tokenizers. Character filters look for special characters

or html tags or specified pattern and then either delete then or change them to appropriate

words like ‘&’ to and, delete html markup tags. Here is an example of analyzer with

synonym specified in synonym.txt:

{

 "settings":{

 "index":{

 "analysis":{

 "analyzer":{

 "synonym":{

 "tokenizer":"whitespace",

 "filter":[

 "synonym"

]

 }

 },

 "filter":{

 "synonym":{

 "type":"synonym",

 "synonyms_path":"synonym.txt",

 "ignore_case":"true"

 }

 }

 }

 }

 }

}

Elasticsearch

67

Elasticsearch is composed of a number of modules, which are responsible for its

functionality. These modules have the following two types of settings:

 Static Settings – These settings need to be configured in config

(elasticsearch.yml) file before starting Elasticsearch. You need to update all the

concern nodes in the cluster to reflect the changes by these settings.

 Dynamic Settings – These settings can be set on live Elasticsearch.

We will discuss the different modules of Elasticsearch in the following sections of this

chapter.

Cluster-Level Routing and Shard Allocation

Cluster level settings decide the allocation of shards to different nodes and reallocation of

shards to rebalance cluster. These are the following settings to control shard allocation:

Cluster-Level Shard Allocation

Setting
Possible

value
Description

cluster.routing.allocation.enable

all
This default value allows shard

allocation for all kinds of shards.

primaries
This allows shard allocation only

for primary shards.

new_primaries

This allows shard allocation only

for primary shards for new

indices.

none
This does not allow any shard

allocations.

cluster.routing.allocation.node_c

oncurrent_recoveries

Numeric value

(by default 2)

This restricts the number of

concurrent shard recovery.

cluster.routing.allocation.node_in

itial_primaries_recoveries

Numeric value

(by default 4)

This restricts the number of

parallel initial primary recoveries.

cluster.routing.allocation.same_s

hard.host

Boolean value

(by default

false)

This restricts the allocation of

more than one replica of the same

shard in the same physical node.

14. Elasticsearch — Modules

Elasticsearch

68

indices.recovery.concurrent_

streams

Numeric value

(by default 3)

This controls the number of open

network streams per node at the

time of shard recovery from peer

shards.

indices.recovery.concurrent_sma

ll_file_streams

Numeric value

(by default 2)

This controls the number of open

streams per node for small files

having size less than 5mb at the

time of shard recovery.

cluster.routing.rebalance.enable

all
This default value allows

balancing for all kinds of shards.

primaries
This allows shard balancing only

for primary shards.

replicas
This allows shard balancing only

for replica shards.

none
This does not allow any kind of

shard balancing.

cluster.routing.allocation.allow_r

ebalance

always
This default value always allows

rebalancing.

indices_primari

es_active

This allows rebalancing when all

primary shards in cluster are

allocated

Indices_all_acti

ve

This allows rebalancing when all

the primary and replica shards

are allocated.

cluster.routing.allocation.cluster_

concurrent_rebalance

Numeric value

(by default 2)

This restricts the number of

concurrent shard balancing in

cluster.

cluster.routing.allocation.balance

.shard

Float value (by

default 0.45f)

This defines the weight factor for

shards allocated on every node.

cluster.routing.allocation.balance

.index

Float value (by

default 0.55f)

This defines the ratio of the

number of shards per index

allocated on a specific node.

cluster.routing.allocation.balance

.threshold

Non negative

float value (by

default 1.0f)

This is the minimum optimization

value of operations that should be

performed.

Elasticsearch

69

Disk-based Shard Allocation

Setting Possible value Description

cluster.routing.allocation.disk.t

hreshold_enabled

Boolean value

(by default

true)

This enables and disables disk

allocation decider.

cluster.routing.allocation.disk.

watermark.low

String value (by

default 85%)

This denotes maximum usage of

disk; after this point, no other

shard can be allocated to that disk.

cluster.routing.allocation.disk.

watermark.high

String value (by

default 90%)

This denotes the maximum usage

at the time of allocation; if this

point is reached at the time of

allocation, then Elasticsearch will

allocate that shard to another disk.

cluster.info.update.interval
String value (by

default 30s)

This is the interval between disk

usages checkups.

cluster.routing.allocation.disk.i

nclude_relocations

Boolean value

(by default

true)

This decides whether to consider

the shards currently being

allocated, while calculating disk

usage.

Discovery

This module helps a cluster to discover and maintain the state of all the nodes in it. The

state of cluster changes when a node is added or deleted from a cluster. The cluster name

setting is used to create logical difference between different clusters. There are some

modules which help you to use the APIs provided by cloud vendors and those are:

 Azure discovery

 EC2 discovery

 Google compute engine discovery

 Zen discovery

Elasticsearch

70

Gateway

This module maintains the cluster state and the shard data across full cluster restarts.

Following are the static settings of this module:

Setting Possible value Description

gateway.expected_nodes
numeric value (by

default 0)

The number of nodes that are

expected to be in the cluster for the

recovery of local shards.

gateway.expected_mast

er_nodes

numeric value (by

default 0)

The number of master nodes that

are expected to be in the cluster

before start recovery.

gateway.expected_data_

nodes

numeric value (by

default 0)

The number of data nodes expected

in the cluster before start recovery.

gateway.recover_after_ti

me

String value

(by default 5m)

This specifies the time for which the

recovery process will wait to start

regardless of the number of nodes

joined in the cluster.

 gateway.recover_after_nod

es

 gateway.recover_after_mas

ter_nodes

 gateway.recover_after_data

_nodes

HTTP

This module manages the communication between HTTP client and Elasticsearch APIs. This

module can be disabled by changing the value of http.enabled to false. The following are

the settings (configured in elasticsearch.yml) to control this module:

Setting Description

http.port
This is a port to access Elasticsearch and it ranges from

9200-9300.

http.publish_port
This port is for http clients and is also useful in case of

firewall.

http.bind_host This is a host address for http service.

http.publish_host This is a host address for http client.

http.max_content_length
This is the maximum size of content in an http request.

Its default value is 100mb

Elasticsearch

71

http.max_initial_line_length
This is the maximum size of URL and its default value is

4kb.

http.max_header_size
This is the maximum http header size and its default value

is 8kb.

http.compression
This enables or disables support for compression and its

default value is false.

http.pipelinig This enables or disables HTTP pipelining.

http.pipelining.max_events
This restricts the number of events to be queued before

closing an HTTP request.

Indices

This module maintains the settings, which are set globally for every index. The following

settings are mainly related to memory usage:

Circuit Breaker

This is used for preventing operation from causing an OutOfMemroyError. The setting

mainly restricts the JVM heap size. For example, indices.breaker.total.limit setting, which

defaults to 70% of JVM heap.

Fielddata Cache

This is used mainly when aggregating on a field. It is recommended to have enough

memory to allocate it. The amount of memory used for the field data cache can be

controlled using indices.fielddata.cache.size setting.

Node Query Cache

This memory is used for caching the query results. This cache uses Least Recently Used

(LRU) eviction policy. Indices.queries.cahce.size setting controls the memory size of this

cache.

Indexing Buffer

This buffer stores the newly created documents in the index and flushes them when the

buffer is full. Setting like indices.memory.index_buffer_size control the amount of heap

allocated for this buffer.

Shard Request Cache

This cache is used to store local search data for every shard. Cache can be enabled during

the creation of index or can be disabled by sending URL parameter.

Elasticsearch

72

Disable cache - ?request_cache=true

Enable cache "index.requests.cache.enable": true

Indices Recovery

It controls the resources during recovery process. The following are the settings:

Setting Default value

indices.recovery.concurrent_streams 3

indices.recovery.concurrent_small_file_streams 2

indices.recovery.file_chunk_size 512kb

indices.recovery.translog_ops 1000

indices.recovery.translog_size 512kb

indices.recovery.compress true

indices.recovery.max_bytes_per_sec 40mb

TTL Interval

Time to Live (TTL) interval defines the time of a document, after which the document gets

deleted. The following are the dynamic settings for controlling this process:

Setting Default value

indices.ttl.interval 60s

indices.ttl.bulk_size 1000

Node

Each node has an option to be data node or not. You can change this property by changing

node.data setting. Setting the value as false defines that the node is not a data node.

Elasticsearch

73

Elasticsearch provides a jar file, which can be added to any java IDE and can be used to

test the code which is related to Elasticsearch. A range of tests can be performed by using

the framework provided by Elasticsearch:

 Unit testing

 Integration testing

 Randomized testing

To start with testing, you need to add the Elasticsearch testing dependency to your

program. You can use maven for this purpose and can add the following in pom.xml.

<dependency>

 <groupId>org.elasticsearch</groupId>

 <artifactId>elasticsearch</artifactId>

 <version>2.1.0</version>

</dependency>

EsSetup has been initialized to start and stop Elasticsearch node and also to create indices.

EsSetup esSetup = new EsSetup();

esSetup.execute() function with createIndex will create the indices, you need to specify

the settings, type and data.

Unit Testing

Unit test is carried out by using JUnit and Elasticsearch test framework. Node and indices

can be created using Elasticsearch classes and in test method can be used to perform the

testing. ESTestCase and ESTokenStreamTestCase classes are used for this testing.

Integration Testing

Integration testing uses multiple nodes in a cluster. ESIntegTestCase class is used for this

testing. There are various methods which make the job of preparing a test case easier.

Methods Description

refresh() All the indices in a cluster are refreshed

ensureGreen() Ensures a green health cluster state

ensureYellow() Ensures a yellow health cluster state

15. Elasticsearch — Testing

Elasticsearch

74

createIndex(name) Create index with the name passed to this method

flush() All indices in cluster are flushed

flushAndRefresh() flush() and refresh()

indexExists(name) Verifies the existence of specified index

clusterService() Returns the cluster service java class

cluster() Returns the test cluster class

Test Cluster Methods

Methods Description

ensureAtLeastNumNodes(n) Ensures minimum number of nodes up in a cluster is

more than or equal to specified number.

ensureAtMostNumNodes(n) Ensures maximum number of nodes up in a cluster is

less than or equal to specified number.

stopRandomNode() To stop a random node in a cluster

stopCurrentMasterNode() To stop the master node

stopRandomNonMaster() To stop a random node in a cluster, which is not a

master node

buildNode() Create a new node

startNode(settings) Start a new node

nodeSettings() Override this method for changing node settings

Accessing Clients

Client is used to access different nodes in a cluster and carry out some action.

ESIntegTestCase.client() method is used for getting a random client. Elasticsearch offers

other methods also to access client and those methods can be accessed using

ESIntegTestCase.internalCluster() method.

Methods Description

iterator() This helps you to access all the available clients.

masterClient() This returns a client, which is communicating with

master node.

nonMasterClient() This returns a client, which is not communicating with

master node.

clientNodeClient() This returns a client currently up on client node.

Elasticsearch

75

Randomized Testing

This testing is used to test the user’s code with every possible data, so that there will be

no failure in future with any type of data. Random data is the best option to carry out this

testing.

Generating Random Data

In this testing, the Random class is instantiated by the instance provided by

RandomizedTest and offers many methods for getting different types of data.

Methods Return value

getRandom() Instance of random class

randomBoolean() Random boolean

randomByte() Random byte

randomShort() Random short

randomInt() Random integer

randomLong() Random long

randomFloat() Random float

randomDouble() Random double

randomLocale() Random locale

randomTimeZone() Random time zone

randomFrom() Random element from array

Assertions

ElasticsearchAssertions and ElasticsearchGeoAssertions classes contain assertions, which

are used for performing some common checks at the time of testing. For example,

SearchResponse seearchResponse = client().prepareSearch();

assertHitCount(searchResponse, 6);

assertFirstHit(searchResponse, hasId("6"));

assertSearchHits(searchResponse, "1", "2", "3", "4",”5”,”6”);

